Image Classification with Multivariate Gaussian Descriptors
نویسندگان
چکیده
Techniques based on Bag Of Words approach represent images by quantizing local descriptors and summarizing their distribution in a histogram. Differently, in this paper we describe an image as multivariate Gaussian distribution, estimated over the extracted local descriptors. The estimated distribution is mapped to a high-dimensional descriptor, by concatenating the mean vector and the projection of the covariance matrix on the Euclidean space tangent to the Riemannian manifold. To deal with large scale datasets and high dimensional feature spaces the Stochastic Gradient Descent solver is adopted. The experimental results on Caltech-101 and ImageCLEF2011 show that the method obtains competitive performance with state-of-the art approaches.
منابع مشابه
GOLD: Gaussians of Local Descriptors for image representation
The Bag of Words paradigm has been the baseline from which several successful image classification solutions were developed in the last decade. These represent images by quantizing local descriptors and summarizing their distribution. The quantization step introduces a dependency on the dataset, that even if in some contexts significantly boosts the performance, severely limits its generalizati...
متن کاملHierarchical Gaussian Descriptors with Application to Person Re-Identification
Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification (re-id). In this paper, we present novel meta-descriptors based on a hierarchical distribution of pixel features. Although hierarchical covariance descriptors have been successfully applied to image classification, the mean information of pixel features, which is absent...
متن کاملFeature Point Descriptors: Infrared and Visible Spectra
This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set...
متن کاملPerformance evaluation of block-based copy- move image forgery detection algorithms
Copy-move forgery is a particular type of distortion where a part or portions of one image is/are copied to other parts of the same image. This type of manipulation is done to hide a particular part of the image or to copy one or more objects into the same image. There are several methods for detecting copy-move forgery, including block-based and key point-based methods. In this paper, a method...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کامل